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Ostwald ripening kinetics in a magnetic fluid made metastable by a strengthening
of an external magnetic field

Alexey O. Ivanov and Andrej Yu. Zubarev
Department of Mathematical Physics, Urals State University, Lenin Avenue 51, 620 083 Ekaterinburg, Russia

~Received 4 March 1998!

Ostwald ripening kinetics in a metastable magnetic fluid has been studied theoretically under the condition
when the highly elongated ellipsoidal shape of the new phase elements stretched along the external magnetic
field direction is taken into account. The self-similar solutions have been obtained for the time evolution of a
supersaturation@;t21/3(ln t)5/18#, of a critical and a mean droplike aggregate volume@;t7/6(ln t)22/3#, of an
aggregate concentration@(ln t)2/3t27/6#. An aggregate distribution density has been found as a function of the
aggregate size and of the critical aggregate size.@S1063-651X~98!11311-9#

PACS number~s!: 64.60.Qb, 64.60.My, 75.50.Pp
le
a

Th
th
t

su
er
tio
th
nc
tu
ea
e
a
r

ll
in

x
s-

c
t

ed
or
rd
q-
ic
n
ole
n

ica
ic
th
ti

te
e

-
. In
etic
m-
ase
nal
ing
tion

the

to
n is
-
aced

tic

ag-
in a
on-
f a

the
onds
r

able
act
dur-
ot
can
eta-
rs a
and
of
An
nce
for-
eta-

tes.
the

ce is
l-
I. INTRODUCTION

Stable colloidal suspensions of the one-domain partic
of ferromagnetic and ferrimagnetic materials are known
magnetic fluids~ferrofluids, ferrocolloids!. The small sizes of
dispersed ferroparticles (;10 nm) provide the particles
with an inherent magnetic moment of the constant value.
stabilization of suspension is usually obtained by coating
magnetic grains with a surfactant layer, which allows us
neglect the influence of the van der Waals forces. As a re
the ferroparticles interact with each other through the st
repulsion of surfactant coats and the dipole-dipole interac
of particle magnetic moments. The distinctive feature of
latter interaction is that it depends not only on the dista
between the two ferroparticle centers, but also on the mu
orientation of the particle magnetic moments. The gr
number of experiments@1–4# show that the magneto-dipol
interaction is responsible for the phase separation of m
netic fluids, accompanied by the existence of droplike agg
gates. These aggregates can be considered as fluids@2,4#
with an interfacial tension surface, representing, essentia
a highly concentrated ferrocolloidal phase suspended
dilute matrix in the form of droplets@1–4#. Typical dimen-
sions of droplike aggregates are of the order of, appro
mately, 1–5mm, i.e., the number of ferroparticles compri
ing the aggregate is approximately 1052107.

From the viewpoint of statistical mechanics the existen
of droplike aggregates may be considered as a result of
violation of thermodynamic stability in a system of dispers
ferroparticles that leads to their condensation. Theref
phase separation in magnetic fluids is treated as a first o
phase transition of the ‘‘ferrocolloidal gas–ferrocolloidal li
uid’’ type. In principle, existing statistical thermodynam
models of magnetic fluids@5–10# have demonstrated that, i
a system of particles interacting through a noncentral dip
dipole potential, the condensation may occur in the abse
of a magnetic field at a temperature below a certain crit
one, the latter is dependent on the value of the ferropart
magnetic moments. This is associated with the fact that
noncentral dipole-dipole interaction of ferroparticle magne
moments displays itself on the whole as an effective in
particle attraction. In a uniform external field this effectiv
PRE 581063-651X/98/58~6!/7517~6!/$15.00
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attraction strengthens@7,8,10#, thus a magnetic field stimu
lates the process of phase separation in magnetic fluids
this case, at isothermal and isobaric conditions, a magn
field increase is equivalent to an effective lowering of te
perature. Such a phenomenon looks like a nontrivial ph
transition of the condensation type, induced by an exter
magnetic field. During such a phase transition the occurr
droplike aggregates are not spherical, the demagnetiza
effects lead to an approximately ellipsoidal shape of
droplets stretched along the external field direction@3,11,12#.
Common methods of equilibrium thermodynamics suffice
understand under what conditions the phase separatio
bound to start@5–8,10#. However, they are certainly inappli
cable to elucidate what happens next and so must be repl
by suitable kinetic methods.

The break of the thermodynamic stability of a magne
fluid is followed by the origination of critical nuclei of a new
phase, by their transformation into macroscopic droplike
gregates, and by the ensuing growth of those aggregates
metastable environment. In theoretical research it is reas
able to distinguish three basic stages of the evolution o
particulate system that follows the preliminary stage of
development of a metastable state. The first one corresp
to the initiation of critical new phase nuclei, which furthe
form either macroscopic new phase elements in a metast
molecular system or droplike aggregates in a colloid. A f
of great consequence for a theoretical treatment is that,
ing this initial stage, the state of the colloid is practically n
affected by the emerging nuclei so that each of them
correctly be regarded as evolving under the constant m
stability condition. The second, intermediate stage cove
combined process of the growth of existing aggregates
of the initiation of additional nuclei in the circumstance
permanently reducing metastability of the parent colloid.
analysis of this stage is greatly complicated by the prese
of negative feedback between the process of aggregate
mation and growth dependent on a transient degree of m
stability ~e.g., a value of the supersaturation! and that of the
gradual reducing of metastability by the growing aggrega
At last, the third stage of final coalescence corresponds to
Ostwald ripening process when the mentioned dependen
of primary importance but the origination of new nuclei a
most ceases and may be safely overlooked.
7517 © 1998 The American Physical Society
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7518 PRE 58ALEXEY O. IVANOV AND ANDREJ YU. ZUBAREV
As far as the first and second stages are concerne
relevant theory has been carried out in Ref.@13# under the
conditions when the highly elongated ellipsoidal shape of
ferrofluid droplike aggregates is taken into account. T
main conclusion of Ref.@13# is that the rate of nucleation
and the kinetics of the intermediate stage of phase trans
go on more rapidly in a magnetic fluid made metastable
an external field. This is due to the fact that a small streng
ening of a magnetic field implies a significant increase of
ferrofluid initial supersaturation. The latter exerts prima
control over the kinetics of the phase separation process

In the present research we should focus our attention
the problem of the theoretical description of the Ostw
ripening kinetics in a magnetic fluid during the phase se
ration induced by a uniform external magnetic field. A ma
ematical model is formulated in Sec. II and includes the
netic equation for the aggregate distribution density,
mass balance equation, and the aggregate growth rate
latter is dependent both on the aggregate volume and on
volume of the critical aggregate. An analysis, presented
Sec. II, shows that the evolution of a system of dropl
aggregates must be accompanied by the self-similar time
havior of the critical aggregate volume. On the basis of t
result, the solution for the aggregate distribution density
obtained in Sec. IV and the self-similar time dependence
the aggregate concentration, the supersaturation, and
mean aggregate volume are discussed.

We shall consider a sterically stabilized magnetic flu
containing identical spherical ferroparticles, suspended
neutral liquid carrier. The ferrocolloid is supposed to be th
modynamically stable in the absence of a magnetic field.
if a weak uniform external magnetic fieldH is present, a
macroscopically homogeneous state of the magnetic fluid
comes unstable and, as a consequence, the magnetic fl
bound to be separated into two homogeneous phases ch
terized by the equilibrium valuesw I and w II of the concen-
tration (w I,w II). At the thermodynamic equilibrium stat
the coexisting phases are separated by a plane interf
surface, which is parallel to an external field. In what fo
lows, we are going to study the kinetics of phase separa
under the conditions when the supersaturation vanishes
the growth of the critical aggregate is of crucial importan

We consider the phase separation kinetics of an initia
weakly concentrated ferrofluid (w0!1). In this case, the
number of occurring droplike aggregates will be small, a
the average distance between the aggregates will be ra
large. Hence, we may neglect the effects of the droplet
lapse in view of the fact of very low hydrodynamic mobilit
of the large droplike aggregates.

II. BASIC EQUATIONS

Let us study the evolution of a system of droplike agg
gates suspended in a macroscopically homogeneous m
stable magnetic fluid at the last stage of phase transition
der the conditions when both the reduction in metastab
~the decrease in the parent ferrocolloid supersaturation! and
the corresponding growth of a critical aggregate volume
taken into account. The degree of metastability is suppo
to be rather small so that it is possible to consider the crit
aggregate nuclei as the macroscopic objects. The evol
, a
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aggregates are distributed over volumeV and it is convenient
to describe this distribution with the help of the variableR
5V1/3. The distribution densityf (t,R) is governed by a ki-
netic equation:

] f

]t
1

]

]RS dR

dt
f D50, t.0, R.0, ~1!

under complete neglect of fluctuations of the diffusiona
controlled growth rate of a single aggregate. We presume
function f (t,R) to be normalized to the number concentr
tion N(t) of the aggregates.

A requirement of conservation of the overall number
ferroparticles in the system under study leads to the m
balance equation:

D~ t !5D02~w II2w I!E
0

`

R3f ~ t,R!dR, D~0!5D0 ,

~2!

wherew I andw II stand for the equilibrium ferroparticle con
centrations of the coexisting ferrocolloidal phases I and
with a plain interface,w I!w II ; D(t)5w2w I has the mean-
ing of the absolute ferrofluid supersaturation, andD0 is an
inital value of the supersaturation.

In order to close the set of equations~1! and ~2! it is
necessary to define the growth ratedR/dt as a function of
parameters specific to an assemblage of evolving aggreg
The determination of the quantitydR/dt as a function of
aggregate volumeV5R3 has been the objective of Ref.@13#.
As shown in Ref.@13#, this function is greatly influenced by
an interrelation between the volume and the shape of
aggregates. In the presence of a weak magnetic field a s
of small droplike aggregates is close to a sphere. But in
case of a rather large volume, the aggregates become h
elongated and stretched along the magnetic field direct
Accordingly to the phase transitions in molecular isotrop
systems, the volume of a critical ferrofluid nucleus increa
while the supersaturation of metastable phase decrea
Thus, all the aggregates~critical and supercritical! may be
regarded as highly elongated. Some experimental stu
@3,11,12# have demonstrated that the shape of the ferrofl
droplets under the presence of a magnetic field is succ
fully approximated by the simple ellipsoid of revolution. B
using the results of Refs.@3,11,12# we consider the droplike
aggregate as an ellipsoid stretched along the external
direction.

During the last stage of the phase separation process
volumes of the aggregates are rather large. Hence, the st
inequality between the ellipsoid semiaxesa andb holds true:
b!a. A quasiequilibrium value of the semiaxis ratioc
5b/a is dependent on the relation between the capill
forces and the effects of demagnetization field. The result
@3,11–13# lead to the following estimation for the highl
elongated aggregate,c!1:

V5R3'
B

c7u ln cu3
, B;

s3

H6
. ~3!

Heres is the interfacial tension coefficient on the aggr
gate surface andH stands for the external field strength. Th
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PRE 58 7519OSTWALD RIPENING KINETICS IN A MAGNETIC . . .
total expression for the positive parameterB is presented in
Ref. @13# @Eq. ~3!# as a function of the interfacial tensio
coefficient, of the magnetic field strength, and of the m
netic permeabilities of ferrocolloid phases I and II. The va
of the interfacial tension coefficients may be calculated on
the basis of well-known methods~see, for example, Ref
@14#!. Some expressions are presented in Refs.@15,16#. The
point is that the interfacial tension is dependent only on
concentrations of dispersed ferroparticles in coexist
phases and on the interparticle interaction energy. The th
ries @15,16# give the values;(5 –10)31027 N/m, which
correlates well with the experimental results:s;(3 –7)
31027 N/m @3,11,12#.

A problem of the aggregate growth rate has been sol
in Ref. @13# on the basis of diffusion-limited conception. Th
ferroparticle concentration profiles outside the aggreg
have been determined with the help of ellipsoidal coor
nates. As a result, the expression for the single aggre
growth rate has been obtained in the form

w II

dV

dt
53S 4p

3 D 2/3

D
V1/32V

*
1/3

c2/3u ln cu
D~ t !,

V
*
1/35

2

3

v
kT

w I

w II

sk~c* !

D
, ~4!

k~c* !5
S

V2/3
'S 9p4

16c*
D 1/3

, c* ,c!1,

which is valid for the highly elongated droplets. Herev and
D are the ferroparticle volume and diffusion coefficient, r
spectively,kT is a thermal energy,S stands for an ellipsoid
surface. ParametersV* andc* are the critical aggregate vo
ume and the corresponding value of the semiaxis ratio: in
caseV.V* the aggregate grows, otherwise forV,V* it
dissolves.

The evolving ellipsoidal aggregates are described by
two following parameters: aggregate volumeV and the semi-
axis ratioc. In order to simplify the analysis, we will use th
quantitiesR5V1/3 andR* 5V

*
1/3 and call them ‘‘the aggre-

gate size’’ and ‘‘the critical aggregate size.’’ The corr
sponding semiaxis ratiosc andc* are the functions of thes
sizes within the expression~3!.

Let us introduce the dimensionless characteristic size
the aggregate:

r 5S V

BD 1/3

5
R

B1/3
, r * 5S V*

B D 1/3

. ~5!

In order to get the explicit form of the aggregate grow
rate ~4! as a function ofr and r * it is convenient to use the
asymptotic expansion

z2 ln z5y, y→`, z~y!'yS 11
ln y

y
1••• D . ~6!

After evident calculations we obtain the following from
Eq. ~3! with the terms of logarithmic accuracy:
-
e

e
g
o-

d

te
-
te

-

e

e

of

c'S 3

7r ln r D
3/7

, c2/3u ln cu'S 3

7D 5/7F ~ ln r !5/7

r 2/7 G , ln r @1.

~7!

By using the expressions~3!–~7!, we get finally

dr

dt
5

b

B

r 2r *
r *

r
*
1/7~ ln r * !1/7

r 12/7~ ln r !5/7
, ~8!

b5S 4p

3 D 2/3 D

w II

2

3

vs

kT

w I

w II
S 9p4

16 D 1/3S 7

3D 4/7

.

The set of equations~1!, ~2!, and~8! describes the evolu
tion of a system of droplike aggregates in a metastable m
netic fluid during the Ostwald ripening stage of the pha
transition process. Further, we are going to obtain the s
similar solution for the distribution function according to th
classical method originally developed by Lifshitz and Sly
zov @17#. It should be noted that there exist some other me
ods of attacking the problem~see, for example, Refs.@18–
22#!. Nevertheless, the Lifshitz-Slyozov approach seems
be most applicable for our purpose.

III. CRITICAL AGGREGATE SIZE

Let us introduce new self-similar variables:

u5
r ~ t !

r * ~ t !
, x~ t !5

r * ~ t !

r * 0
, r * 05S V* 0

B D 1/3

, ~9!

whereu has the meaning of the aggregate size measure
units of the critical aggregate size,x stands for a dimension
less critical size, andV* 0 is an initial value of the critical
aggregate volumeV* . With the help of the dimensionles
time variablet85tbB21r

* 0
218/7 we get instead of Eq.~8!,

d~ux!

dt8
5

~u21!x1/7@ ln~xr* 0!#1/7

~ux!12/7@ ln~uxr* 0!#5/7
. ~10!

After evident calculations we may write Eq.~10! in the
form

du19/7

dt
5g8

~u21!~ ln x1 ln r * 0!1/7

~ ln x1 ln u1 ln r * 0!5/7
2u19/7, ~11!

g85
1

x11/7~dx/dt8!
, t5

19

7
ln x.

In view of the fact that the dimensionless critical si
tends toward infinity while the supersaturation approac
zero, we may neglect the terms lnr*0 and lnu in comparison
with ln x. Hence,

du19/7

dt
5g~u21!2u19/7,

~12!

g5
g8

~ ln x!4/7
5

1

x11/7~ ln x!4/7~dx/dt8!
.
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7520 PRE 58ALEXEY O. IVANOV AND ANDREJ YU. ZUBAREV
The right side of Eq.~12! may depend onu by one of the
three kinds illustrated in Fig. 1. This function is charact
ized by one maximum at the pointu5u0 and touches theu
axis only for the valueg5g0 . Every point on theu axis
represents the state of the aggregate with respect to
growth. In the case ofg.g0 all the points to the left ofu1
move towards the left and disappear at the coordinate ce
All the pointsu1,u,u2 move towards the right and all th
points to the right ofu2 move towards the left up to th
steady state atu2 . This means that all the aggregates w
acquire the sizer 5u2r * (t) and will tend to infinity with the
growth of the critical size. Thus, the mass balance equa
~20! will not be satisfied. In the caseg,g0 all the points on
theu axis move towards the left and disappear, and the m
balance equation will be incorrect again. Consequently,
cording to the method of Ref.@14# we are able to state tha
the functiong(t) must approach the limitg0 from below:

g~t!5g0@12«~t!2#, «~t→`!→0. ~13!

The valueg0 is determined from the set of algebra
equations

g0~u021!2u0
19/750, ~14!

7g0219u0
12/750.

Thus, for the coordinates of the lockup point we get

u05
19

12
, g05

19

7 S 19

12D
12/7

. ~15!

Substituting the expression~13! to the growth rate~12!,
we come to the equation for the functionz(t)5@u(t)
2u0#/«(t):

1

«

dz

dt
52

72

133
z21hz2

7

12
, h5

d

dtS 1

« D . ~16!

Following the previous line of attack, we get for th
lockup point of Eq.~16! and for the function«(t):

h05
12

A114
, z05

7

12
A19

6
, «~t!5

A114

12

1

t
. ~17!

FIG. 1. Possible dependencies of the growth rate~12! on the
self-similar aggregate size.
-
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Therefore, the functiong(t) tends to the limitg0 accord-
ing to powert22. For the caset→` we may neglect the
difference ofg(t) from the lockup valueg0 . By using the
definition ~12! we get the differential equation:

x11/7~ ln x!4/7
dx

dt8
5

1

g0
, ~18!

which may be easily integrated

t8

g0
5E

1

x

s11/7~ ln s!4/7ds

5E
0

ln x

expS 18

7
z D z4/7dz

5
7

18
z4/7expS 18

7
z D U

0

lnx

2
2

9E0

ln x

z2/7expS 18

7
z Ddz

'~7/18!x18/7~ ln x!4/7, x→`, ln x@1. ~19!

With the help of asymptotical expansion~6! we obtain the
self-similar evolution law of the critical aggregate size:

x~ t8!5r * ~ t8!/r * 0;
~ t8!7/18

~ ln t8!2/9
, t8→`. ~20!

The expression~20! represents the asymptotic time b
havior of the critical ellipsoidal aggregate growth. We wou
like to recall that according to the Lifshitz-Slyozov theo
@17# the similar law for spherical aggregates has the follo
ing scaling form:x;t1/3. The comparison shows that at larg
times the highly elongated ellipsoidal critical aggrega
grows faster than the spherical one.

Concerning the time evolution of the supersaturation,
have to take into account the expressions~4! and ~7!:

D;
c
*
21/3

x
;x26/7~ ln x!21/7;~ t8!21/3~ ln t8!5/18. ~21!

The asymptotic behavior of the supersaturation appear
be very close to the classical resultD;t21/3. However, the
supersaturation in a magnetic fluid made metastable b
strengthening of an external field decreases slower than
same one for the system with the spherical nuclei of a n
phase. The point is that the rate of decreasing of the su
saturation is larger in the case under study as compared
the system of spherical drops.

IV. AGGREGATE DISTRIBUTION FUNCTION

Let us now determine the aggregate distribution funct
by size. It is convenient to turn from the functionf (t,R) to a
new distribution density by the dimensionless aggreg
sizesw(t,u)5 f (t,R)R* : w(t,u)du5 f (t,R)dR. The latter
is governed by a kinetic equation:

]w

]t
1

]

]uS du

dt
w D50. ~22!
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According to the results of the previous section, the
gregate growth rate may be written as follows:

du

dt
5

7

19u12/7
@g0~u21!2u19/7#. ~23!

The solution of the kinetic equation~22! may be obtained
with the help of the method of characteristics:

w~t,u!52
x@t2t~u!#

~du/dt!
,

~24!

t~u!5
19

7 E
0

u u12/7du

g0~u21!2u19/7
.

wherex(z) represents the unknown function of the chara
teristics. The only way to determine this function is to u
the mass balance equation~2!. By taking into account the
conditionD(t8→`)→0, this equation becomes

w II

D0
E

0

`

R3f ~ t,R!dR5bx3E
0

u0
u3wdu51,

~25!

b5
w II

D0
R

* 0
3 ,

where the upper integration limit turns tou0 according to the
asymptotic behavior of the aggregate growth rate~Fig. 1!: in
the realized caseg5g0 all the aggregates withu.u0 must
dissolve. Thus, att8→` the distribution densityw ap-
proaches zero fast for allu.u0 .

With substitution of expression~24! the mass balance
equation~25! takes the form

b expS 21

19
t D E

0

u0
u3w~t,u!du51. ~26!

The left side of this equation becomes independent ot
only in the case whenx is the exponential function ont:

x@t2t~u!#5C expH 21

19
@t~u!2t#J , C5const. ~27!

Hence, the aggregate distribution density in self-sim
variables is determined as follows:

w~t,u!5C expF2
21

19
t GP~u!, ~28!

P~u!52
21

19
expF21

19
t~u!G S du

dt D 21

H~u02u!,

whereH(z) is the Heaviside step function and the factorC
has to be calculated from the equation~26!:

C215bE
0

u0
u3P~u!du. ~29!

The dependence of the distribution functionP(u) on u is
shown on the Fig. 2. This function appears to be normali
to unity:
-

-

r

d

E
0

u0
P~u!du52

21

19E0

u0
expF21

19
t~u!G S du

dt D 21

du

52
21

19E0

`

expF21

19
t~u!Gdt~u!51. ~30!

The expressions~28! and ~29! totally describe the aggre
gate distribution over self-similar size variableu and the in-
tegral characteristics of the system of aggregates during
Ostwald ripening stage of the ferrocolloid phase separa
process.

For example, the numerical concentration of the dropl
aggregates asymptotically varies in time according to

N~ t !5E
0

`

f ~ t,R!dR5E
0

u0
w~t,u!du

5C expF2
21

19
t G; ~ ln t8!2/3

~ t8!7/6
. ~31!

The classical theory@17# predicts for the spherical new
phase elements the asymptoticsN;t21. The comparison of
this and expression~31! shows that the number of ellipsoida
droplets decreases with time faster than for the spher
ones.

The mean volume of the aggregate is

^V~ t !&5
R

*
3

N~ t !E0

u0
u3w~t,u!du

5R
*
3 E

0

u0
u3P~u!du;

~ t8!7/6

~ ln t8!2/3
~32!

and grows with time faster than for the spherical case w
^V&;t.

V. DISCUSSION

To sum up we are able to describe by an analytical s
similar method the evolution of the system of droplike elli
soidal aggregates in a magnetic fluid under the presenc
an external magnetic field during the Ostwald ripening sta
of the phase separation process. Essentially the same
proach could be applied to numerous processes of a

FIG. 2. Self-similar aggregate distribution density~28! as a
function of the dimensionless aggregate size.
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7522 PRE 58ALEXEY O. IVANOV AND ANDREJ YU. ZUBAREV
phase formation in molecular and colloid systems. As co
pared with the latter, the magnetic field induced phase se
ration in ferrofluids is essentially controlled by the mutu
relation between the volume of an aggregate and its sh
An elongation of the aggregate during its growth is acco
panied by an increase of both the interfacial surface and
concentration gradient in the vicinity of the side surface. T
latter is caused by the relative decrease~as compared with
that for a sphere! of the transverse size of the ellipsoid. Co
sequently, the aggregate elongation results in a higher v
of growth rate in comparison with that of spherical drople

Besides that, an ellipsoidal shape of the aggregates l
to the nonclassical relation for the critical aggregate volu
that is dependent not only on the ferrocolloid supersatu
tion, but on the critical aggregate semiaxis ratio as w
Taken together these special features result in the self-sim
time evolution laws that differ from the classical theorie
The general conclusion is that the system of highly elonga
ellipsoidal aggregates evolves faster in comparison with
system of spherical drops.

It should be noted that the problem of the Ostwald ripe
ing kinetics in magnetic fluids has been examined earlie
Ref. @23#, where diffusion-limited conditions for the droplik
aggregate growth rate have been considered. While de
mining the ferroparticle concentration profiles, the author
Ref. @23# has used the quasicylindrical solution of the s
tionary diffusion equation in the vicinity of a drop and th
self-similar solution of this equation in spherical geome
far from a drop. The asymptotic joining of the two nonco
sistent expressions has brought the author to a physic
meaningless result: the drop growth rate obviously depe
on time @;(ln t)21# and decreases up to zero even at a c
stant metastability. During the analysis of the Ostwald rip
ing kinetics, the author of Ref.@23# has neglected this loga
ci.
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rithmic dependence and has obtained the self-sim
solutions as the power functions. The point is that the ex
nents for the time evolution of the drop concentrati
(;t27/6) and of the mean drop volume (;t27/6) coincide
with the expressions~31! and ~32! with logarithmic accu-
racy.

Unlike the method of Ref.@23#, our results are based o
the expression for the aggregate growth rate~4! obtained in
Ref. @13#. In this paper we have considered the diffusio
limited growth rate of a highly elongated ellipsoidal ferr
fluid drop under the presence of a weak magnetic field.
order to determine the ferroparticle concentration profiles
have used the ellipsoidal coordinates while solving the d
fusion equation. As a result, expression~4! does not hold any
discrepancies of physical nature. On the one hand, g
agreement of the results of the present research and of
@23# seems to be questionable, on the other hand, this ag
ment may be regarded as a verification of the theoret
predictions.

The evolution of the system of droplike aggregates at
final stage of phase transition also may be influenced by
process of drop coagulation. This phenomenon will be i
portant under the high drop concentration and under
rather large magnetic interaction energy. This situation
realized, for example, in magnetorheological and el
trorheological suspensions. A theoretical analysis of the e
lution of the system of elongated droplike aggregates in
presence of an external magnetic field due to the drop coa
lation mechanism represents the point of the separate st
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