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Ostwald ripening kinetics in a magnetic fluid made metastable by a strengthening
of an external magnetic field
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Ostwald ripening kinetics in a metastable magnetic fluid has been studied theoretically under the condition
when the highly elongated ellipsoidal shape of the new phase elements stretched along the external magnetic
field direction is taken into account. The self-similar solutions have been obtained for the time evolution of a
supersaturatiofi~t~3(In1)>8], of a critical and a mean droplike aggregate volyme®(In t)~%], of an
aggregate concentratigiln t)?%~7/6]. An aggregate distribution density has been found as a function of the
aggregate size and of the critical aggregate $i8&063-651X%98)11311-9

PACS numbegps): 64.60.Qb, 64.60.My, 75.50.Pp

I. INTRODUCTION attraction strengthen¥,8,10, thus a magnetic field stimu-
lates the process of phase separation in magnetic fluids. In

£ 1 i d ferri i terial K this case, at isothermal and isobaric conditions, a magnetic
ot ferromagnetic and fernmagnetic materials are kKnown asje|q jncrease is equivalent to an effective lowering of tem-

magnetic fluidgferrofluids, ferrocolloids The small sizes of perature. Such a phenomenon looks like a nontrivial phase

dispersed ferroparticles~(10 nm) provide the particles ransition of the condensation type, induced by an external
with an inherent magnetic moment of the constant value. Thghagnetic field. During such a phase transition the occurring
stabilization of suspension is usually obtained by coating thejroplike aggregates are not spherical, the demagnetization
magnetic grains with a surfactant layer, which allows us toeffects lead to an approximately ellipsoidal shape of the
neglect the influence of the van der Waals forces. As a resultiroplets stretched along the external field direcfi®i1,13.

the ferroparticles interact with each other through the steriCommon methods of equilibrium thermodynamics suffice to
repulsion of surfactant coats and the dipole-dipole interactiomnderstand under what conditions the phase separation is
of particle magnetic moments. The distinctive feature of thebound to starf5-8,10. However, they are certainly inappli-
latter interaction is that it depends not only on the distanceable to elucidate what happens next and so must be replaced
between the two ferroparticle centers, but also on the mutudly suitable kinetic methods.

orientation of the particle magnetic moments. The great The break of the thermodynamic stability of a magnetic
number of experimentsl—4] show that the magneto-dipole fluid is followed by the origination of critical nuclei of a new
interaction is responsible for the phase separation of mag2hase, by their transformation into macroscopic droplike ag-
netic fluids, accompanied by the existence of droplike aggredregates, and by the ensuing growth of those aggregates in a
gates. These aggregates can be considered as fRidls metastab!e environment. In theoretlcal research it is reason-
with an interfacial tension surface, representing, essentiallyl€ t© distinguish three basic stages of the evolution of a
a highly concentrated ferrocolloidal phase suspended in articulate system that follows the preliminary stage of the

dilute matrix in the form of droplet§1—4]. Typical dimen- evelopment of a metastable state. The first one corresponds

sions of droplike aggregates are of the order of, approxi:[o the initiation of critical new phase nuclei, which further

mately, 1—5um, i.e., the number of ferroparticles compris- form either macroscopic new phase eleme_nts ina r_netastable
. ' o . 5 S molecular system or droplike aggregates in a colloid. A fact
ing the aggregate IS approxw_na_tely 010'. _ : of great consequence for a theoretical treatment is that, dur-

From the viewpoint of statistical mechanics the existence, ;s initial stage, the state of the colloid is practically not
of droplike aggregates may be considered as a result of theracteq by the emerging nuclei so that each of them can
violation of thermodynamic stability in a system of dispersedcorrecﬂy be regarded as evolving under the constant meta-
ferroparticles that leads to their condensation. Thereforestapility condition. The second, intermediate stage covers a
phase separation in magnetic fluids is treated as a first ordgombined process of the growth of existing aggregates and
phase transition of the “ferrocolloidal gas—ferrocolloidal lig- of the initiation of additional nuclei in the circumstance of
uid” type. In principle, existing statistical thermodynamic permanently reducing metastability of the parent colloid. An
models of magnetic fluidgs—10] have demonstrated that, in analysis of this stage is greatly complicated by the presence
a system of particles interacting through a noncentral dipoleef negative feedback between the process of aggregate for-
dipole potential, the condensation may occur in the absenamation and growth dependent on a transient degree of meta-
of a magnetic field at a temperature below a certain criticaktability (e.g., a value of the supersaturali@nd that of the
one, the latter is dependent on the value of the ferroparticlgradual reducing of metastability by the growing aggregates.
magnetic moments. This is associated with the fact that that last, the third stage of final coalescence corresponds to the
noncentral dipole-dipole interaction of ferroparticle magneticOstwald ripening process when the mentioned dependence is
moments displays itself on the whole as an effective interof primary importance but the origination of new nuclei al-
particle attraction. In a uniform external field this effective most ceases and may be safely overlooked.

Stable colloidal suspensions of the one-domain particle
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As far as the first and second stages are concerned, amgregates are distributed over volumand it is convenient
relevant theory has been carried out in Réf3] under the to describe this distribution with the help of the variaBle
conditions when the highly elongated ellipsoidal shape of the=V*/3, The distribution density(t,R) is governed by a ki-
ferrofluid droplike aggregates is taken into account. Thenetic equation:
main conclusion of Ref[13] is that the rate of nucleation
and the kinetics of the intermediate stage of phase transition of a9 [dR
go on more rapidly in a magnetic fluid made metastable by BRI
an external field. This is due to the fact that a small strength-
ening of a magnetic field implies a significant increase of theunder complete neglect of fluctuations of the diffusionally
ferrofluid initial supersaturation. The latter exerts primarycontrolled growth rate of a single aggregate. We presume the
control over the kinetics of the phase separation process. function f(t,R) to be normalized to the number concentra-

In the present research we should focus our attention otion N(t) of the aggregates.
the problem of the theoretical description of the Ostwald A requirement of conservation of the overall number of
ripening kinetics in a magnetic fluid during the phase sepaferroparticles in the system under study leads to the mass
ration induced by a uniform external magnetic field. A math-balance equation:
ematical model is formulated in Sec. Il and includes the ki-
netic equation for the aggregate distribution density, the _ * 3 _
mass balance equation, and the aggregate growth rZ\te; the A(t)_AO_(‘P“_‘P')fO RF(LR)AR, A(0)=4,,
latter is dependent both on the aggregate volume and on the 2
volume of the critical aggregate. An analysis, presented in
Sec. I, shows that the evolution of a system of droplikewheree, and ¢, stand for the equilibrium ferroparticle con-
aggregates must be accompanied by the self-similar time beentrations of the coexisting ferrocolloidal phases | and Il
havior of the critical aggregate volume. On the basis of thigvith a plain interfacep,< ¢ ; A(t)=¢— ¢, has the mean-
result, the solution for the aggregate distribution density idng of the absolute ferrofluid supersaturation, axglis an
obtained in Sec. IV and the self-similar time dependences dhital value of the supersaturation.
the aggregate concentration, the supersaturation, and the In order to close the set of equatiof®) and (2) it is
mean aggregate volume are discussed. necessary to define the growth rat®/dt as a function of

We shall consider a sterically stabilized magnetic fluidparameters specific to an assemblage of evolving aggregates.
containing identical spherical ferroparticles, suspended in @he determination of the quantitgR/dt as a function of
neutral liquid carrier. The ferrocolloid is supposed to be ther-aggregate volum¥ =R has been the objective of R¢13].
modynamically stable in the absence of a magnetic field. Bufs shown in Ref[13], this function is greatly influenced by
if a weak uniform external magnetic field is present, a an interrelation between the volume and the shape of the
macroscopically homogeneous state of the magnetic fluid beaggregates. In the presence of a weak magnetic field a shape
comes unstable and, as a consequence, the magnetic fluidasmall droplike aggregates is close to a sphere. But in the
bound to be separated into two homogeneous phases charaase of a rather large volume, the aggregates become highly
terized by the equilibrium valueg, and ¢, of the concen- elongated and stretched along the magnetic field direction.
tration (¢;<¢;). At the thermodynamic equilibrium state Accordingly to the phase transitions in molecular isotropic
the coexisting phases are separated by a plane interfacigystems, the volume of a critical ferrofluid nucleus increases
surface, which is parallel to an external field. In what fol- while the supersaturation of metastable phase decreases.
lows, we are going to study the kinetics of phase separatioithus, all the aggregatggritical and supercriticalmay be
under the conditions when the supersaturation vanishes amdgarded as highly elongated. Some experimental studies
the growth of the critical aggregate is of crucial importance[3,11,17 have demonstrated that the shape of the ferrofluid

We consider the phase separation kinetics of an initiallydroplets under the presence of a magnetic field is success-
weakly concentrated ferrofluidep<<1). In this case, the fully approximated by the simple ellipsoid of revolution. By
number of occurring droplike aggregates will be small, andusing the results of Ref§3,11,13 we consider the droplike
the average distance between the aggregates will be ratheggregate as an ellipsoid stretched along the external field
large. Hence, we may neglect the effects of the droplet coldirection.
lapse in view of the fact of very low hydrodynamic mobility =~ During the last stage of the phase separation process, the
of the large droplike aggregates. volumes of the aggregates are rather large. Hence, the strong

inequality between the ellipsoid semiaxa@andb holds true:
b<a. A quasiequilibrium value of the semiaxis rato
Il. BASIC EQUATIONS =b/a is dependent on the relation between the capillary
forces and the effects of demagnetization field. The results of
,11-13 lead to the following estimation for the highly
ongated aggregate<<1:

f)=0, t>0, R>0, D

Let us study the evolution of a system of droplike aggre
gates suspended in a macroscopically homogeneous me
stable magnetic fluid at the last stage of phase transition urf
der the conditions when both the reduction in metastability 3
(the decrease in the parent ferrocolloid supersaturatiod — PR3~ B B~ g 3)
the corresponding growth of a critical aggregate volume are c’lIn c|3' HE’
taken into account. The degree of metastability is supposed
to be rather small so that it is possible to consider the critical Hereo is the interfacial tension coefficient on the aggre-
aggregate nuclei as the macroscopic objects. The evolvingate surface anH stands for the external field strength. The
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(Inr)37

Ref. [13] [Eq. (3)] as a function of the interfacial tension o
r

coefficient, of the magnetic field strength, and of the mag-
netic permeabilities of ferrocolloid phases | and Il. The value )
of the interfacial tension coefficierat may be calculated on
the basis of well-known methodsee, for example, Ref.
[14]). Some expressions are presented in RéfS,16. The

total expression for the positive parameBers presented in 3 \37 3\ 5/7
c~( ) . ¢In c|~<7>

>1.
7rinr ] Inr=>1

By using the expression8)—(7), we get finally

1/7, 1/7
dr br—r,r.(nry)

point is that the interfacial tension is dependent only on the , (8
concentrations of dispersed ferroparticles in coexisting dt B ry @7nr)7

phases and on the interparticle interaction energy. The theo-

ries [15,16] give the valueoc~(5-10)x 107 N/m, which o 47\PD 2 vo <p|(9774 3/ 7\ 417
correlates well with the experimental results~(3-7) “\ 3 agﬁa 16 3

X10 " N/m[3,11,17.
A problem of the aggregate growth rate has been solved The set of equationél), (2), and(8) describes the evolu-

in Ref.[13] on the basis of diffusion-limited conception. The tion of a system of droplike aggregates in a metastable mag-

ferroparticle concentration profiles outside the aggregat@etic fluid during the Ostwald ripening stage of the phase

have been determined with the help of ellipsoidal coordi-transition process. Further, we are going to obtain the self-

nates. As a result, the expression for the single aggregatgmilar solution for the distribution function according to the

growth rate has been obtained in the form classical method originally developed by Lifshitz and Slyo-
zov[17]. It should be noted that there exist some other meth-
dv 4|23 YB3 ods of attacking the problertsee, for example, Ref§18—
i, (?> WA(U, 22]). Nevertheless, the Lifshitz-Slyozov approach seems to

be most applicable for our purpose.

2 v ¢ ok(cy)

V1/3 (4) Ill. CRITICAL AGGREGATE SIZE
* 3 kT (p“ A !
Let us introduce new self-similar variables:
S (97" ) (D) Vo) ¥
-2 - < . K _ *0
K(Cy) \2/3 (16c*) » Cooe<l, U—m: X(t)= fog | M«0=| g ) : 9

which is valid for the highly elongated droplets. Hereand  Whereu has the meaning of the aggregate size measured in
D are the ferroparticle volume and diffusion coefficient, re-units of the critical aggregate sizestands for a dimension-
spectively kT is a thermal energyS stands for an ellipsoid less critical size, and/,. o is an initial value of the critical
surface. Parameteks, andc, are the critical aggregate vol- aggregate volum&/, . With the help of the dimensionless
ume and the corresponding value of the semiaxis ratio: in théme variablet’ =tbhB~*r, 38" we get instead of E¢8),
caseV>V, the aggregate grows, otherwise fgV, it
dissolves. d(ux)  (u=1)x"TIn(xr, o)1
The evolving ellipsoidal aggregates are described by the dat = 1217 57
- : - (ux)=TIn(uxryo)]
two following parameters: aggregate voluMand the semi-
axis ratioc. In order to simplify the analysis, we will use the
guantitiesR=V*’® andR, =V2'® and call them “the aggre-
gate size” and “the critical aggregate size.” The corre-
sponding semiaxis ratiocsandc, are the functions of these dut®? (u=1)(Inx+In reo)Y’

(10

After evident calculations we may write E¢LO) in the
form

sizes within the expressia(3). P 57 ut?”, (11)
Let us introduce the dimensionless characteristic sizes of (Inx+Inutinr,o)
the aggregate:
, 1 19
Vi R v, 1/3 Y zm, T=7|nX.
SHE ©

In view of the fact that the dimensionless critical size
tends toward infinity while the supersaturation approaches
zero, we may neglect the termsrly and Inu in comparison
with Inx. Hence,

In order to get the explicit form of the aggregate growth
rate (4) as a function of andr, it is convenient to use the
asymptotic expansion

dul®”
Iny = y(u—1)—ul¥"
z—Inz=y, y—w, z(y)=yll+—+-.-|. (6) dr
y (12)
Y 1

After evident calculations we obtain the following from y= - .
Eq. (3) with the terms of logarithmic accuracy: (Inx)¥" xX7(nx)¥"(dx/dt’)
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FIG. 1. Possible dependencies of the growth d® on the
self-similar aggregate size.

The right side of Eq(12) may depend om by one of the

three kinds illustrated in Fig. 1. This function is character-

ized by one maximum at the poiot=u, and touches the
axis only for the valuey=y,. Every point on theu axis

represents the state of the aggregate with respect to its ~(7118x%(Inx)*7

growth. In the case o> vy, all the points to the left ofi;
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Therefore, the function(7) tends to the limity, accord-
ing to powerr 2. For the caser— we may neglect the
difference ofy(7) from the lockup valuey,. By using the
definition (12) we get the differential equation:

X11/7( In X)4/7% — i

, 18
dt’ 7o 18
which may be easily integrated
! X
:j S11/7(|n S)4/7dS
Yo 1
In x 18
:J EX[<7§) {4/7d§
0
7 18 \|™ 2 rinx 18
— AT - _ 217, -
18t exn( - 4) -y 4 exn( 7 §)dz
Xx—o, Inx>1. (29

move towards the left and disappear at the coordinate center. \yjith the help of asymptotical expansi¢s) we obtain the

All the pointsu;<u<u, move towards the right and all the
points to the right ofu, move towards the left up to the

steady state ati,. This means that all the aggregates will

acquire the size=u,r, (t) and will tend to infinity with the

growth of the critical size. Thus, the mass balance equation

(20) will not be satisfied. In the casg< vy, all the points on

theu axis move towards the left and disappear, and the mass
balance equation will be incorrect again. Consequently, a

cording to the method of Refl14] we are able to state that
the functiony(7) must approach the limiyg from below:

Y(D)=vl1-e(n?], &(r—*)=0. 13

The value y, is determined from the set of algebraic

equations
Yo(Up—1)—ug”"=0, (14
7vo—19u3?"=0.

Thus, for the coordinates of the lockup point we get

19 1217
"

19

~ 19
-=

Up YYo= 7 (15)

Substituting the expressioil3) to the growth ratg12),
we come to the equation for the functiar(7)=[u(7)

—Ugl/e(7):
1dz_ 72 ) 7 _d 1 16
sdr 133 T 1 "Tads) (19

Following the previous line of attack, we get for the
lockup point of Eq.(16) and for the functiore(7):

12 7 /19 V1141 1
ﬂo——ﬂy 2=\ &M= 17

self-similar evolution law of the critical aggregate size:

(t/)7/18

—_ t'—
(Int1)2/9’

X(t) =1, (1)1 40~

o .

(20)

The expressior(20) represents the asymptotic time be-
avior of the critical ellipsoidal aggregate growth. We would

Sike to recall that according to the Lifshitz-Slyozov theory

[17] the similar law for spherical aggregates has the follow-
ing scaling formx~t3. The comparison shows that at large
times the highly elongated ellipsoidal critical aggregate
grows faster than the spherical one.

Concerning the time evolution of the supersaturation, we
have to take into account the expressiofisand (7):

-1/3
*
A~

~X76/7(|n X)71/7~(tl)7l/3(|ntr)5/18. (21)

The asymptotic behavior of the supersaturation appears to
be very close to the classical result-t~3, However, the
supersaturation in a magnetic fluid made metastable by a
strengthening of an external field decreases slower than the
same one for the system with the spherical nuclei of a new
phase. The point is that the rate of decreasing of the super-
saturation is larger in the case under study as compared with
the system of spherical drops.

IV. AGGREGATE DISTRIBUTION FUNCTION

Let us now determine the aggregate distribution function
by size. It is convenient to turn from the functié(t,R) to a
new distribution density by the dimensionless aggregate
sizesp(7,u)=f(t,R)R, : ¢(7,u)du=1(t,R)dR. The latter
is governed by a kinetic equation:

dp N d(du
or  ouldr?

(22
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According to the results of the previous section, the ag- P(u)
gregate growth rate may be written as follows:

du

7
a7 pel You= 1 —u, (23

The solution of the kinetic equatiq22) may be obtained
with the help of the method of characteristics:

( u)__X[T—T(U)]
PR Tduidr)
(24 !
19 (u ut?du 0 1 u
0 yo(u—=1)—-u FIG. 2. Self-similar aggregate distribution densi88) as a

. function of the dimensionless aggregate size.
where x(z) represents the unknown function of the charac- gareg

teristics. The only way to determine this function is to use

-1
the mass balance equati¢®). By taking into account the ju(’p(u)du:_z_l quX;{Z_lT(u) (%) du
conditionA(t' —w)—0, this equation becomes 0 19J0 19 dr
LAl P - S =—2—1 wex 2—17-(u) dr(u)y=1. (30
A_o . R*f(t,R)dR=Bx . u“edu=1, 19), 19 .

@ (25 The expression&28) and (29) totally describe the aggre-
B= A—Rio, gate distribution over self-similar size variahleand the in-

0 tegral characteristics of the system of aggregates during the
Ostwald ripening stage of the ferrocolloid phase separation
process.

For example, the numerical concentration of the droplike
aggregates asymptotically varies in time according to

where the upper integration limit turns tg according to the
asymptotic behavior of the aggregate growth (&ig. 1): in
the realized casg= vy, all the aggregates with>ug, must
dissolve. Thus, at’—co the distribution densitye ap-
proaches zero fast for ali>u,. 0 up
With substitution of expressioli24) the mass balance N(t):f f(t,R)dsz e(r,u)du
equation(25) takes the form 0 0
r{ 21 | (Int")??
=Cexp——=7

~—. (3D

19 (t/)7/6

21 o o _
B ex 19" fo u®p(7,u)du=1. (26)

The left side of this equation becomes independenton  1he classical theory17] predicts for the spherical new

only in the case whely is the exponential function on: phase elements the asymptotiés-t *. The comparison of
this and expressio(81) shows that the number of ellipsoidal
21 droplets decreases with time faster than for the spherical

x[7—7m(u)]=Cex 19 r(u)—7]y, C=const. (27  ognes.
The mean volume of the aggregate is
Hence, the aggregate distribution density in self-similar 3
variables is determined as follows: _ Ry Yo 3
<V(t)>_ N(t) u ()D(Tlu)du
0

21
o(7,u)=Cex ~197 P(u), (28)

u t’ 716
=R§f *u3P(u)du~ (—)/3 32)
. 0 (Int")?
_ 21 21
P(u)=— 195X ET(U) dr H(uo—w), and grows with time faster than for the spherical case with
(V)y~t.
whereH(z) is the Heaviside step function and the factr
has to be calculated from the equati@®): V. DISCUSSION

To sum up we are able to describe by an analytical self-
similar method the evolution of the system of droplike ellip-
soidal aggregates in a magnetic fluid under the presence of

The dependence of the distribution functiBfu) onuis  an external magnetic field during the Ostwald ripening stage
shown on the Fig. 2. This function appears to be normalize®f the phase separation process. Essentially the same ap-
to unity: proach could be applied to numerous processes of a new

c-lzgfuolﬁp(u)du. (29)
0
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phase formation in molecular and colloid systems. As com+sithmic dependence and has obtained the self-similar
pared with the latter, the magnetic field induced phase sepsolutions as the power functions. The point is that the expo-
ration in ferrofluids is essentially controlled by the mutualnents for the time evolution of the drop concentration
relation between the volume of an aggregate and its shapé=t~ ") and of the mean drop volume-¢~"°) coincide

An elongation of the aggregate during its growth is accomWith the expressiong31) and (32) with logarithmic accu-
panied by an increase of both the interfacial surface and th&Cy.

concentration gradient in the vicinity of the side surface. The Unlike the method of Refi23], our results are based on
latter is caused by the relative decredas compared with the expression for the aggregate growth refeobtained in
that for a sphereof the transverse size of the ellipsoid. Con- R€f- [13]. In this paper we have considered the diffusion-
sequently, the aggregate elongation results in a higher val ﬁj"i'ted growth rate of a highly elongated ellipsoidal ferro-

of growth rate in comparison with that of spherical droplets. d drop unde_r the presence _Of a weak magnetic f|_eld. In
éder to determine the ferroparticle concentration profiles we

Besides that, an ellipsoidal shape of the aggregates Iea(gave used the ellipsoidal coordinates while solving the dif-

to the nonclassical relation for the critical aggregate volume " tion. A it @ d t hold
that is dependent not only on the ferrocolloid supersatura-USIOn equation. As a result, expressidh does not hold any

tion, but on the critical aggregate semiaxis ratio as We”_dlscrepanmes of physical nature. On the one hand, good

Taken together these special features result in the self-simil ?teement ?f tbhe resu:f[s ofbtlhe pretf]entt:]eseﬁrcz iﬂd of Ref.
time evolution laws that differ from the classical theories. ]tseems bo € qut(ajs (ljona & on.f_ et_o erf ?hn ’th IS a%retle—
The general conclusion is that the system of highly eIongateH1en may be regarded as a verification ot the theoretica

ellipsoidal aggregates evolves faster in comparison with th redictions. . .
sysptem of sgr?eri?:al drops P The evolution of the system of droplike aggregates at the

It should be noted that the problem of the Ostwald ripen_final stage of phase transition also may be influenced by the

ing kinetics in magnetic fluids has been examined earlier irPrOfeStS ofddropshcoagurllagon. This ph(:n?.menondwill (;)e im'
Ref.[23], where diffusion-limited conditions for the droplike portant ‘under the high drop concentralion and under the
aggregate growth rate have been considered. While dete@ther large magnetic interaction energy. This situation is

mining the ferroparticle concentration profiles, the author ofealized, for example, in magnetorheological and elec-
Ref. [23] has used the quasicylindrical solution of the Sta_trorheologlcal suspensions. A theoretical analysis of the evo-

tionary diffusion equation in the vicinity of a drop and the lution of th? systetm of Ielongati_d grtl)dpl(ljke ?g?rr]egdates in the
self-similar solution of this equation in spherical geometrylprt(.asence% an externa ma?nf[ahlc €l t ufetho N ropt) co?gdu-
far from a drop. The asymptotic joining of the two noncon- ation mechanism represents he point ot the separate study.

sistent expressions has brought the author to a physically
meaningless result: the drop growth rate obviously depends
on time[~(Int)~!] and decreases up to zero even at a con- This work has been carried out with the financial support
stant metastability. During the analysis of the Ostwald ripen-of the Russian Basic Research Foundati@nants No. 96-
ing kinetics, the author of Ref23] has neglected this loga- 15-9604 and No. 98-01-00081
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